Independent sets in the middle two layers of Boolean lattice

نویسندگان

چکیده

For an odd integer n=2d?1, let B(n,d) be the subgraph of hypercube Qn induced by two largest layers. In this paper, we describe typical structure independent sets in and give precise asymptotics on number them. The proofs use Sapozhenko's graph container method a recently developed Jenssen Perkins, which combines lemma with cluster expansion for polymer models from statistical physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE INTERNAL IDEAL LATTICE IN THE TOPOS OF M-SETS

We believe that the study of the notions of universal algebra modelled in an arbitarry topos rather than in the category of sets provides a deeper understanding of the real features of the algebraic notions. [2], [3], [4], [S], [6], [7], [13], [14] are some examples of this approach. The lattice Id(L) of ideals of a lattice L (in the category of sets) is an important ingredient of the categ...

متن کامل

Explicit Matchings in the Middle Levels of the Boolean Lattice

New classes of explicit matchings for the bipartite graph a(k) consisting of the middle two levels of the Boolean lattice on 2k+ 1 elements are constructed and counted. This research is part of an ongoing effort to show that g(k) is Hamiltonian. AMS subject classifications (1980). 05(345,05C70,06AlO.

متن کامل

Long Cycles in the Middle Two Levels of the Boolean Lattice

An intriguing open question is whether the graph formed by the middle two levels of the Boolean lattice of subsets of a k element set has a Hamilton path for all k We consider nding a lower bound on the length of the longest cycle in this graph A result of Babai for vertex transitive graphs gives a lower bound of N where N is the total number of vertices in the middle two levels In this paper w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2021

ISSN: ['0097-3165', '1096-0899']

DOI: https://doi.org/10.1016/j.jcta.2020.105341